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With the added structure of a Riemannian metric g on a smooth manifold M we
can extend the gradient, the Hessian, and the second derivative test to the curved
setting.

Definition. Let f : M → R be a smooth function. The gradient of f is the smooth
vector field ∇f dual to the 1-form df . That is, for all vector fields X on M ,

df(X) = g(∇f,X).

Just like in Rn, the gradient is perpendicular to level sets.

Lemma. Let c ∈ R be a regular value of f . Then ∇f is orthogonal to f−1(c).

Proof. Since c is a regular value, f−1(c) is a smooth submanifold of M with tangent
space at a point Tpf

−1(c) = ker dfp. Let v be tangent to f−1(c) at p. Then

g(∇f, v) = dfp(v) = 0.

�

At noncritical points, the gradient also points in the direction of the greatest
increase in f , as it does in the flat setting. Similarly, the negative of the gradient
points in the direction of greatest decrease.

Proposition. At a noncritical point p, the derivative dfp restricted to the unit

tangent sphere UpM at p has a maximum at ∇f
‖∇f‖ and a minimum at − ∇f

‖∇f‖ .

Proof. Consider dfp : UpM → R. Since UpM is compact, dfp has a maximum and
a minimum. We can locate them using the derivative: Let w ∈ TvUpM = v⊥, then

d(dfp)v(w) = dfp(w)

since dfp is linear. If v is a critical point of dfp then 0 = d(dfp)v = dfp(w) for all w
perpendicular to v. Equivalently, v is a critical point of dfp if

g(∇fp, w) = 0 for all w ∈ v⊥

Hence ∇fp is orthogonal to v⊥. Since ∇fp 6= 0 and since v⊥ is (n−1) dimensional,
we must have ∇f in the span of v. So, the two critical points v are either

v =
∇f
‖∇f‖

or v = − ∇f
‖∇f‖

.

But,

dfp

(
± ∇f
‖∇f‖

)
= ±g

(
∇f, ∇f
‖∇f‖

)
= ±‖∇f‖.

Hence, f is increasing most rapidly in the direction of the gradient, and decreasing
most rapidly in the direction opposite the gradient. �
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The Hessian of f is the symmetric 2-tensor given as the second covariant deriv-
ative of f , i.e., Hessf = ∇(∇f) and is the natural notion of a second derivative of
a function on a Riemannian manifold. Its action on vector fields X and Y is given
by

Hessf(X,Y ) = X(Y f)− df(∇XY ) = g(∇X(∇f), Y ).

Now, suppose p is a non-degenerate critical point of f . By this we mean Hessfp 6= 0.
To determine whether f(p) is a maximum or a minimum, we can check the signature
of the Hessian. To prove this we first need a chain rule for the second derivative on
a Riemannian manifold.

Lemma. If γ : U →M is a smooth curve in M , then

d2

dt2
(f ◦ γ) (t) = Hessfγ(t) (γ′(t), γ′(t)) + dfγ(t)

(
∇γ′(t)γ

′(t)
)

Proof. The following takes place on the pullback bundle γ∗TM . Metric compati-
bility of the Levi-Civita connection ∇ says

dg(X,Y ) = g(∇X,Y ) + g(X,∇Y )

and so

d2

dt2
f ◦ γ = d(dfγ(γ′)) = dg(∇f, γ′) = g(∇γ′(∇f), γ′) + g(∇f,∇γ′γ′)

= Hessf(γ′, γ′) + df(∇γ′γ′)

�

Theorem (The Second Derivative Test). Suppose p is a non-degenerate critical
point of f . Then f has a maximum at p if and only if Hessf is negative-definite.The
function f has a minimum at p if and only if Hessf is positive-definite.

Proof. Let γ be a curve in M through p. Since p is a critical point of f ,

d

dt
f ◦ γ

∣∣∣∣
t=0

= dfp(γ
′(0)) = 0

so 0 is a critical point of f ◦ γ. We may then apply the second derivative test from
single variable calculus using the following

d2

dt2
(f ◦ γ) = Hessf(γ′, γ′) + dfγ(t)(∇γ′γ′).

When t = 0 this reads

d2

dt2
f ◦ γ

∣∣∣∣
t=0

= Hessf(γ′(0), γ′(0)).

If the Hessian is negative definite, then

d2

dt2
f ◦ γ

∣∣∣∣
t=0

< 0

for all curves γ. This tells us f ◦ γ(0) = f(p) is a local maximum no matter the
curve through p, and this is equivalent to f(p) being a local maximum of f .

Conversely, if f(p) is a local maximum, then f ◦γ has negative second derivative
at 0 for all curves γ though p. This is equivalent to Hessf(v, v) < 0 for all v ∈ TpM
as we may take a curve γ with γ′(0) = v. Hence, the Hessian is negative definite.
The other case is similar. �
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1. The second derivative on a Riemannian manifold

The double tangent bundle TTM to a Riemannian manifold splits as follows.
Let π : TM → M be the projection. Define V(p,v)TM = ker dπ(p,v). From the
regular value theorem we see that

ker dπ(p,v) = T(p,v)π
−1(p) = T(p,v)TpM ' TpM.

This space is called the vertical space at (p, v) and it the map which sends y ∈ TpM
to ỹ ∈ V(p,v)TM using this identification is called the vertical lift of x. For a smooth
function f : M → R we have the useful property d(df)(p,v)(ỹ) = dfp(y).

The Riemannian metric on M singles out a complementary subspace H(p,v)TM
called the horizontal space at (p, v). Let x ∈ TpM and let γ be a curve with γ(0) = p
and γ′(0) = x. Let v(t) be the parallel transport of v along γ, so ∇xv(0) = 0. The
call γ̃(t) = (γ(t), v(t)), this defines a curve in TM starting at (p, v) and γ̃′(0) is a
tangent vector in T(p,v)TM . The horizontal space H(p,v)TM consists of all vector
tangent to TM at (p, v) obtained in this way and we call the vector γ̃′(0) =: x̃ the
horizontal lift of x. We have

T(p,v)TM = H(p,v)TM ⊕ V(p,v)TM
Now, let f : M → R be a smooth function. Then df : TM → R by df(p, v) =

dfp(v) is also a smooth function and so we can consider its derivative d(df) :
TTM → R. We would like to understand this second derivative in terms of the
splitting of the double tangent space into the horizontal and vertical space, and
particularly in terms of horizontal and vertical lifts of vectors from TpM .

To this end, let w ∈ T(p,vTM and decompose it as w = x̃ + ỹ where x̃ is the
horizontal lift of x and ỹ is the vertical lift of y. Then d(df)(p,v)(w) = d(df)(p,v)(x̃)+
d(df)(p,v)(ỹ). We know that d(df)(p,v)(ỹ) = dfp(y) by the property of a vertical lift
of a vector. For the remaining factor, we know that x̃ is the tangent vector at zero
to the curve (γ(t), v(t)). We can therefore compute

d(df)(p,v)(x̃) =
d

dt

∣∣∣∣
t=0

df(γ(t), v(t)) =
d

dt

∣∣∣∣
t=0

dfγ(t)(v(t)) =
d

dt

∣∣∣∣
t=0

g(∇fγ(t), v(t))γ(t)

= g(∇γ′(t)∇fγ(t), v(t))
∣∣
t=0

+ g(∇fγ(t),∇γ′(t)v(t))
∣∣
t=0

= g(∇x∇fp, v)p + g(∇fp,∇xv(0))p

= ∇2f(v, x)

since ∇xv(0) = 0.
Hence, if we consider instead d(df)(p,v) : TpM × TpM → R then we have

d(df)(p,v)(x, y) = ∇2f(v, x)p + dfp(y)

(note that the order of x and y matters).
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